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Abstract 

The cost of drug discovery and development is driven primarily by failure, with just ~10% of 
clinical programs eventually receiving approval. We previously estimated that human genetic 
evidence doubles the success rate from clinical development to approval. In this study we 
leverage the growth in genetic evidence over the past decade to better understand the 
characteristics that distinguish clinical success and failure. Relative success (RS) between drug 
mechanisms with genetic support and those without varies significantly among therapy areas 
and development phases and improves with increasing confidence in the causal gene. RS is 
largely unaffected by genetic effect size, minor allele frequency, or year of discovery. Our 
findings suggest that we are far from reaching peak genetic insights to aid the discovery of 
targets for more effective drug therapies.  

 

 

The cost of drug discovery and development is driven primarily by failure1, with just ~10% of 
clinical programs eventually receiving approval2–4. We previously estimated that human genetic 
evidence doubles the success rate from clinical development to approval5. In this study we 
leverage the growth in genetic evidence over the past decade to better understand the 
characteristics that distinguish clinical success and failure. Relative success (RS) between drug 
mechanisms with genetic support and those without varies significantly among therapy areas 
and development phases and improves with increasing confidence in the causal gene. RS is 
largely unaffected by genetic effect size, minor allele frequency, or year of discovery. Our 
findings suggest that we are far from reaching peak genetic insights to aid the discovery of 
targets for more effective drug therapies.  

Human genetics is one of the only forms of scientific evidence that can demonstrate the causal 
role of genes in human disease, providing a crucial tool for identifying and prioritizing potential 
drug targets and providing insights into the effect of pharmacological engagement, dose-
response relationships6,7 and safety risks8. Nonetheless, many questions remain about the 
application of human genetics in drug discovery. Genome-wide association studies (GWAS) of 
common, complex traits, including diseases, generally identify variants of small effect. This 
contributed to early skepticism of the value of GWAS9. Anecdotally, such variants can point to 
highly successful drug targets6,7, and yet, genetic support from GWAS is less predictive of drug 
target advancement than support from Mendelian disease5,10.  

In this paper we investigate several open questions regarding the use of genetic evidence for 
prioritizing drug discovery. We explore the characteristics of genetic associations that are more 
likely to differentiate successful from unsuccessful drug mechanisms, exploring how they differ 
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across therapy areas and among discovery and development phases. We also investigate how 
close we are to saturating the insights we can get from genetic studies for drug discovery and 
how much of the genetically supported drug discovery space remains unexplored.  

After filtering Citeline Pharmaprojects for monotherapy programs added since 2000 annotated 
with a highest phase reached and assigned a human gene target, we obtained 29,476 target-
indication (T-I) pairs for analysis (Fig. S1). Intersecting with 79,095 unique human gene-trait (G-
T) pairs (see Methods) yielded an overlap of 2,153 T-I and G-T pairs (7.3%) with an indication-
trait similarity ≥0.8 (Fig. S1, S2A). The probability of having genetic support was higher for 
launched T-I pairs than those in historical or active clinical development (Figure 1A), consistent 
with our previous findings5,10. We defined relative success (RS) as the ratio of the probability of 
success with genetic support to the probability of success without genetic support. Focusing on 
historical programs — those with known outcomes of either discontinuation or launch — we 
tested the sensitivity of RS to various characteristics of genetic evidence. RS was sensitive to 
the indication-trait similarity threshold (Figure S2A), which we set to 0.8 for all analyses herein. 
RS was >2 for all sources of human genetic evidence examined (Figure 1B). The highest value 
for OMIM (RS = 3.4) was not the result of a higher success rate for orphan drug programs 
(Figure S2B), a designation commonly acquired for rare diseases. Rather it may be due to the 
difference in confidence in causal gene assignment between Mendelian conditions and GWAS. 
The RS for Open Targets GWAS (OTG) associations was sensitive to the confidence in variant-
to-gene mapping as reflected in the minimum share of locus-to-gene score (Figure 1C). Somatic 
evidence from IntOGen had an RS of 2.4 in oncology (Figure S2C), similar to GWAS overall. 
Analyses below are limited to germline genetic evidence unless otherwise noted. 

As sample sizes grow ever larger with a corresponding increase in the number of unique G-T 
associations, some expect11 the value of GWAS genetic findings to become less useful for the 
purpose of drug target selection. We explored this in several ways. We investigated the year 
that a genetic support for a T-I pair was first discovered, under the expectation that more 
common and larger effects are discovered earlier. Although there was a slightly higher RS for 
discoveries from 2007-2010 that was largely driven by early lipid and cardiovascular-related 
associations, the effect of year was not significant (P = 0.37, Figure 1D). Results were similar 
when replications or OMIM discoveries were included (Figure S2D-E). We next divided up 
GWAS associations by the number of unique G-T associations. Counter to our expectations, 
probability of launch increased with the number of associated genes by 0.045% per gene (P = 
0.031, Figure 1D). There were no statistically significant associations with estimated effect sizes 
(P = 0.93 and 0.59, for quantitative and binary traits, respectively) nor minor allele frequency (P 
= 0.43, Figure 1D). We illustrate that ever larger GWAS can continue to uncover support for 
successful targets with a recent large GWAS that more than doubled the number of significantly 
associated loci with type 2 diabetes12: of 12 launched drug mechanisms, the number with 
GWAS support increased from 5 to 7 (Figure S3). 
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Figure 1. Impact of genetic evidence characteristics on relative success. A) Proportion of 
target-indication (T-I) pairs with genetic support, P(G), as a function of highest phase reached. 
Bars are Wilson 95% confidence intervals. B) Sensitivity of relative success (RS) from phase I–
launch of T-I pairs with genetic evidence to source of human genetic association. Bars are Katz 
95% confidence intervals. C) Sensitivity of RS to locus-to-gene (L2G) share threshold among 
Open Targets Genetics (OTG) genome-wide association study (GWAS) significant associations. 
The minimum L2G share required for inclusion in the dataset is varied from 0.1 to 1.0 in 
increments of 0.05 (labels) and RS (y axis) is plotted against the number of clinical (phase I+) 
programs considered to have genetic support from OTG (x axis). Shaded areas are Katz 95% 
confidence intervals. D) Sensitivity of RS for OTG GWAS-supported T-I pairs to binned 
variables: i) year in which a T-I pair first acquired human genetic support from GWAS, excluding 
replications and excluding T-I pairs otherwise supported by OMIM, ii) number of genes 
exhibiting genetic association to the same trait, iii) quartile of effect size (beta) for quantitative 
traits, iv) quartile of effect size (odds ratio, OR) for case/control traits standardized to be >1 (i.e., 
1/OR if <1), and v) order of magnitude of minor allele frequency bins. Bars are Katz 95% 
confidence intervals. E) Count of indications ever in development in Pharmaprojects (y axis) by 
the number of genes associated with traits similar to those indications (x axis).  See Figure S6 
for the same analyses restricted to drugs with a single known target. 
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Previously, we observed significant heterogeneity amongst therapy areas in the fraction of 
approved drug mechanisms with genetic support, but did not investigate the impact on 
probability of success5. Here, our estimates of RS from phase I to launch show significant 
heterogeneity (P < 1.0e-15), with nearly all therapy areas having estimates greater than one, 11 
of 17 greater than two, and hematology, metabolic, and respiratory greater than three (Fig. 2A-
E). In most therapy areas, the impact of genetic evidence was most pronounced in phases II 
and III and least impactful in phase I, corresponding to their capacity to demonstrate clinical 
efficacy. We also found evidence that genetic evidence differentiated likelihood to progress from 
preclinical to clinical development. This was most notable for metabolic diseases, that may 
reflect preclinical models that are more predictive of clinical outcomes. Probability of genetic 
support by therapy area was correlated with probability of success (r = 0.52, P = 0.032) and with 
RS (r = 0.66, n = 68, P = 0.0026; Fig. S4), which led us to explore how the sheer quantity of 
genetic evidence available within therapy areas (Fig. 2F, Fig. S5A) may influence this. We found 
that therapy areas with more possible gene-indication (G-I) pairs supported by genetic evidence 
had significantly higher RS (r = 0.73, P = 0.00089, Fig. 2G), although respiratory and endocrine 
were notable outliers with high RS despite fewer associations.  

We hypothesized that genetic support might be most pronounced for drug mechanisms with 
disease-modifying effects, as opposed to those that manage symptoms, and that the proportion 
of such drugs differ by therapy area13,14. We were unable to find data with these descriptions 
available for a large number of drug mechanisms, but we reasoned that targets of disease-
modifying drugs are more likely to be specific to a disease, whereas targets of symptom-
managing drugs are more likely to be applied across many indications. We therefore examined 
the number and diversity of all-time launched indications per target. Launched T-I pairs are 
heavily skewed towards a few targets. Of 450 launched targets, the 42 with ≥10 launched 
indications comprise 713 (39%) of 1,806 launched T-I pairs (Fig. 2H). Many of these are used 
across diverse indications for management of symptoms such as inflammatory and immune 
responses (NR3C1, IFNAR2), pain (PTGS2, OPRM1), mood (SLC6A4), or parasympathetic 
response (CHRM3). The count of launched indications was inversely correlated with the mean 
similarity of those indications (ρ = -0.72, P = 1.7e-85; Fig. 2H). Among T-I pairs, the probability 
of having genetic support increased as the number of approved indications decreased (P = 
1.8e-6) and as the similarity of a target’s approved indications increased (P = 3.0e-6, Figure 2I). 
We observed a corresponding impact on RS, increasing in therapy areas where the similarity 
among approved indications increased, and decreasing with increasing indications per target (r 
= 0.68, P = 0.002, and r = -0.56, P = 0.023, respectively, Fig. 2J-K). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.23.23291765doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 2. Differences in relative success between therapy areas and the number and 
diversity of indications per target. A-E) RS by therapy area and phase transition. Bars are 
Katz 95% confidence intervals. F) Number of approved indications vs. similarity of those 
indications, by approved drug target. I) Proportion of approved target-indication pairs with 
genetic support, P(G), binned by quintile of the number of approved indications per target (top 
panel) or by mean similarity among approved indications (bottom panel). Targets with exactly 1 
approved indication (6.2% of launched T-I pairs) are considered to have mean similarity of 1.0. 
Bars are Wilson 95% confidence intervals. G) RS (y axis) by number of supported G-I pairs (x 
axis) across therapy areas, dots colored as in panels A-E and sized according to number of 
genetically supported T-I pairs in at least phase I. H) Mean similarity (y axis) among approved 
indications per target (x axis). J) As G, with mean similarity (x axis). K) As G, with mean count of 
approved indications per target (x axis). See Figure 7 for the same analyses restricted to drugs 
with a single known target. 

 

Only 4.7% (284/6,067) of T-I pairs active in phase I-III possess human germline genetic support 
(Figure 1A), similar to T-I pairs no longer in development (4.2%, 595/14,098), a difference that 
was not statistically significant (P = 0.14). We estimated (see Methods) that only 1.1% of all 
genetically supported G-I relationships have been explored clinically (Figure 3A), or 2.2% when 
restricting to the most similar indication. Given that the vast majority of proteins are classically 
“undruggable”, we explored the proportion of genetically supported G-I pairs that had been 
developed to at least phase I, as a function of therapy area across several classes of 
tractability15 (Fig. 3A). Within therapy areas, oncology kinases with germline evidence were the 
most saturated at 100 of 230 (43%) of all genetically supported G-I pairs had reached at least 
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phase I, followed by nuclear receptors for musculoskeletal disorders (2/7, 29%) and GPCRs for 
psychiatric indications (15/53, 28%). Grouping by target rather than G-I pair, 3.7% of genetically 
supported targets have been pursued for any genetically supported indication (Figure S5B). Of 
possible genetically supported G-I pairs, most (74%) arose from OTG associations, mostly 
within the past 5 years (Figure 2F). Such low utilization is partly due to recent emergence of 
most genetic evidence (Fig. S2F-G, Fig. S5A). Because some types of targets may be more 
readily tractable by antagonists than agonists, we also grouped by target and examined human 
genetic evidence by direction of effect, for IntOGen tumor suppressors versus oncogenes 
(Figure 3B), identifying a few substrata for which a majority of genetically supported targets had 
been pursued to at least phase I for at least one genetically supported indication. Oncogene 
kinases received the most attention, with 19/26 (73%) reaching phase I.  

To focus on demonstrably druggable proteins, we further restricted the analysis to targets with 
both i) any program reaching phase I, and ii) ≥1 genetically supported indication. Out of 1,130 
qualifying targets, only 371 (33%) targets had been pursued for one or more supported 
indications (Figure 3C). Most of these targets were pursued for indications with and without 
genetic support (303, 27%), though most development effort has been for unsupported 
indications at a 17:1 ratio. Within this subset of targets, we asked whether genetic support was 
predictive of which indications would advance the furthest. Grouping active and historical 
programs by D-I pair, we found that the odds of advancing to a later stage in the pipeline is 80% 
higher for indications with genetic support (P = 4.8e-72, Figure 3D).  
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Figure 3. Clinical investigation of drug mechanisms with genetic evidence. A) Heatmap of 
proportion of genetically supported T-I pairs that have been developed to at least phase I, by 
therapy area (y axis) and gene list (x axis). B) As panel A, but for genetic support from IntOGen 
rather than germline sources and grouped by the direction of effect of the gene according to 
IntOGen (y axis), and also grouped by target rather than T-I pair. Thus, the denominator for 
each cell is the number of targets with at least one genetically supported indication, and each 
target counts in the numerator if at least one genetically supported indication has reached 
phase I. C) Of targets that have both reached phase I for any indication, and have at least one 
genetically supported indication, the mean count (x axis) of genetically supported (left) and 
unsupported (right) indications pursued, binned by the number of possible genetically supported 
indications (y axis). Bars are Wilson 95% confidence intervals. D) Proportion of D-I pairs with 
genetic support, P(G) (x axis), as a function of the drug-indication pair’s phase reached (inner y 
axis grouping) and the drug’s highest phase reached for any indication (outer y axis grouping). 
Bars are Wilson 95% confidence intervals. See Figure S8 the same analyses restricted to drugs 
with a single known target. 
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While there have been anecdotes such as HMGCR to argue that genetic effect size may not 
matter in prioritizing drug targets, here we provide systematic evidence that small effect size, 
recent year of discovery, increasing number of genes identified, or higher associated allele 
frequency do not diminish the value of GWAS evidence. Without refuting the omnigenic model, 
this suggests that at current sample sizes, GWAS results can help identify drug targets most 
likely to succeed. These results argue for continuing investment to expand GWAS-like evidence, 
particularly for many complex diseases with treatment options that fail to modify disease. 
Although genetic evidence has value across most therapy areas, its benefit is more pronounced 
in some areas than others. Furthermore, it is possible that the therapy areas where genetic 
evidence had a lower impact have seen more focus on symptom management. If so, we would 
predict that for drugs aimed at disease modification, human genetics should ultimately prove 
highly valuable across therapy areas. 

The focus of this work has been on the relative success of drug programs with and without 
genetic evidence. We have mostly demonstrated several factors that do not impact this value.  
Given drug development interest within a therapy area, we have not demonstrated 
characteristics of the genetic evidence, aside from confidence in the causal gene, that might 
differentiate which genes to focus on as potential drug targets. As GWAS sample size and 
diversity continue to grow, the omnigenic model predicts that for complex traits most genes will 
have a measurable effect, even if relatively few are core to the etiology. Under this model, the 
vast majority of associated genes are peripheral, having effects mediated through their influence 
on core genes16. If core genes are most relevant as therapeutic drug targets, then a decreasing 
fraction of genes identified through GWAS over time should be considered potential drug 
targets. More work is required to better understand the challenges of target identification and 
prioritization given the genetic evidence precondition. 

The utility of human genetic evidence has had firm theoretical and empirical footing for several 
years5,6,10. If the benefit of this evidence were canceled out by competitive crowding17, then 
currently active clinical phases should have higher rates of genetic support than their 
corresponding historical phases, and might look similar to, or even higher than, approved pairs. 
Instead, we find that active programs continue to have low rates of genetic support, similar to 
historical pipelines, suggesting that human genetic data have not yet begun to appreciably 
influence pipeline composition across the industry. Meanwhile, only a tiny fraction of classically 
druggable genetically supported G-I pairs have been pursued even among targets with clinical 
development reported. Human genetics thus represents a growing opportunity for novel target 
selection and improving indication selection for existing drugs and drug candidates. Increasing 
emphasis on drug mechanisms with supporting genetic evidence is expected to increase 
success rates and lower the cost of drug discovery and development. 
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Methods 
Drug development pipeline. Citeline Pharmaprojects18 was queried via API (Dec 22, 2022) to 
obtain information on drugs, targets, indications, phases reached, and current development 
status (active versus historical). We removed combination therapies, diagnostic indication, and 
programs with no human target or no indication assigned. For most analyses, only programs 
added to the database since 2000 were included, while for the count and similarity of launched 
indications per target, we used all launches for all time. Indications were considered to have 
genetic insight if they had ≥0.8 similarity to i) an OMIM or IntOGen disease, or ii) a GWAS trait 
with at least 3 independently associated loci, based on lead SNP positions rounded to the 
nearest 1 Mb. For calculating relative success, we used the number of T-I pairs with genetic 
insight as the denominator. Many drugs had more than one target assigned, in which case all 
targets were retained for target-indication pair analyses. Re-running all analyses restricted to 
only drugs with exactly one target assigned yielded substantially similar results (Figures S5-7). 

OMIM. The OMIM Gene Map (downloaded Sep 29, 2021) contained 8,246 unique gene-
phenotype links. We restricted to entries with phenotype mapping code 3 (“the molecular basis 
for the disorder is known; a mutation has been found in the gene”) and removed phenotypes 
with no MIM number assigned. We used regular expression matching to further filter out 
phenotypes containing the terms “somatic”, “susceptibility”, or “response” (drug response 
associations) and those flagged as questionable (“?”), or representing non-disease phenotypes 
(“[”). A set of OMIM phenotypes are flagged as denoting susceptibility rather than causation 
(“{”); this category includes low-penetrance or high allele frequency association assertions that 
we wished to exclude, but also germline heterozygous loss-of-function mutations in tumor 
suppressor genes, where the underlying mechanism of disease initiation is loss of 
heterozygosity, which we wished to include. We therefore also filtered out phenotypes 
containing “{” except for those that did contain the terms “cancer”, “neoplasm”, “tumor”, or 
“malignant” and did not contain the term “somatic”. Remaining entries were evaluated for validity 
and disease mechanism by two curators, and gene-disease combinations for which a disease 
association was deemed not to have been established were excluded from all analyses. All of 
the above filters left 5,450 gene-trait links. MeSH terms for OMIM phenotypes were then 
mapped using the EFO OWL database using an approach previously described19, with 
additional mappings from Orphanet, full text matches to the full MeSH vocabulary, or finally, 
manual curation, for a cumulative 100% mapping rate. 

Open Targets Genetics. Open Targets Genetics (OTG, version 8) variant-to-disease (V2D), 
locus-to-gene (L2G), variant index, and study index data were downloaded from EBI. Traits with 
multiple EFO IDs were excluded as these generally represent conditional, epistasis, or other 
complex phenotypes that would lack mappings in the MeSH vocabulary. Of the top 100 traits 
with the greatest number of genes mapped, we excluded 76 as having no clear disease 
relevance (example: “red cell distribution width”) or no obvious marginal value (example: 
excluded “trunk predicted mass” because “body mass index” was already included). Remaining 
traits were mapped to MeSH using the EFO OWL database, full text queries to the MeSH API, 
mappings already manually curated in PICCOLO (see below) or new manual curation. In total, 
25,124/49,599 unique traits (51%) were successfully mapped to a MeSH ID. We included 
associations with P < 5e-8. For gene mapping we defined L2G share as the proportion of the 
total L2G score assigned each gene among all potentially causal genes with any L2G score. In 
sensitivity analyses we considered L2G and V2G share thresholds from 10% to 100% (Figure 
1B and S3A), but main analyses used only genes with ≥50% L2G share (which are also the top-
ranked genes for their respective associations). 
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PICCOLO. PICCOLO20 tests for colocalization without full summary statistics by using 
Probabilistic Identification of Causal SNPs (PICS) and a reference dataset of SNP linkage 
disequilibrium values. We included hits with GWAS P < 5e-8, eQTL P < 1e-5, and H4 ≥ 0.9. 

Genebass. Genebass21 data from 394,841 UK Biobank participants (the “500K” release) were 
queried using Hail (July 22, 2022) We used SKAT pLoF gene burden tests with P < 1e-5. 
Because the traits in Genebass are from UK Biobank, which is included in OTG, we used the 
OTG MeSH mappings established above.  

IntOGen. IntOGen (Feb 1, 2020) assigns each gene a mechanism in each tumor type; 
occasionally a gene will be classified as a tumor suppressor in one type and an oncogene in 
another. We grouped by gene and assigned each gene its modal classification across cancers. 
MeSH mappings were curated manually. 

MeSH term similarity. MeSH term Lin and Resnik similarities were computed as described22,23. 
Similarities of -1, indicating infinite distance between two concepts, were assigned as 0. The two 
scores were regressed against each other across all term pairs, and the Resnik scores were 
adjusted by a multiplier such that both scores had a range from 0 to 1 and their regression had 
a slope of 1. The two scores were then averaged to obtain a combined similarity score. 
Similarity scores were successfully calculated for 1,022/1,033 (98.9%) unique MeSH terms for 
Pharmaprojects indications, corresponding to 99.6% of Pharmaprojects T-I pairs, and for 
2,299/2,638 (87.1%) unique MeSH terms for genetic associations, corresponding to 99.8% of 
associations. 

Therapeutic areas. MeSH terms for Pharmaprojects indications were mapped onto 16 top-level 
headings plus an “other”. Many MeSH terms map to >1 tree position; these multiples were 
retained and counted towards each therapy area, except for the following conditions: for terms 
mapped to oncology, we deleted their mappings to all other areas; and “other” was used only for 
terms that mapped to no other areas. 

Analysis of Vujkovic et al. 2020 type 2 diabetes GWAS. We considered as novel any genes 
with a novel nearest gene, novel coding variant, or a novel lead SNP colocalized with an eQTL 
with H4 ≥ 0.9. Non-novel nearest genes, coding variants, and colocalized lead SNPs were 
considered established variants. Together, these approaches identified 217 established GWAS 
genes and 469 novel ones. We included 19 genes from OMIM linked to Mendelian forms of 
diabetes or syndromes with diabetic features. We identified 344 unique drug targets in 
Pharmaprojects reported with a type 2 diabetes or diabetes mellitus indication, including 22 
approved. We reviewed the list of approved drugs and eliminated those where there were 
questions around the relevance of the drug or target to T2D (AKR1B1, AR, DRD1, HMGCR, 
IGF1R, LPL, SLC5A1). Because Pharmaprojects ordinarily specifies the receptor as target for 
protein or peptide replacement therapies, we also remapped the minority of programs where the 
ligand, rather than receptor, had been listed as target (changing INS to INSR, GCG to GCGR) 
To assess the proportion of of programs with genetic support, we first grouped by drug and 
selected just one target, preferring the target with the earliest genetic support (OMIM, then 
established GWAS, then novel GWAS, then none). Next we grouped by target and selected its 
highest phase reached. Finally, we grouped by highest phase reached and counted the number 
of unique targets. 

Universe of possible genetically supported gene-indication pairs. In all of our analyses, 
targets are defined as human gene symbols, but we use the term gene-indication pair (G-I) to 
refer to possible genes that one might attempt to target with a drug, and target-indication pair 
(T-I) to refer to genes that are the targets of actual drug candidates in development. To 
enumerate the space of possible G-I pairs, we multiplied the N=774 Pharmaprojects indications 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2023. ; https://doi.org/10.1101/2023.06.23.23291765doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291765
http://creativecommons.org/licenses/by-nc-nd/4.0/


considered here by the “universe” of N=19,338 protein-coding genes, yielding a space of N= 
14,967,612 possible G-I pairs. Of these, N=103,688 (0.69%) qualify as having genetic support per 
our criteria. A total of 17,475 T-I pairs have reached at least Phase I in an active or historical 
program, of which 1,189 (6.8%) are genetically supported. This represents an enrichment compared 
to random chance (OR = 10.7, P < 1.0e-15, Fisher exact test), but in absolute terms, only 1.1% of 
genetically supported G-I pairs have been pursued. A genetically supported G-I pair may be less 
likely to attract drug development interest if the indication already has many other potential targets, 
and/or if the indication is but the second-most similar to the gene’s associated trait. Removing 
associations with many GWAS hits and restricting to the single most similar indication left a space of 
32,718 possible genetically supported G-I pairs, 727 (2.2%) of which had been pursued. This small 
percentage might yet be perceived to reflect competitive saturation, if the vast majority of indications 
are undevelopable and/or the vast majority of targets are undruggable. We therefore asked what 
proportion of genetically supported G-I pairs had been developed to at least Phase I, as a function of 
therapy area cross-tabulated against Open Targets predicted tractability status or membership in 
canonically “druggable” protein families, using families from ref. 15 as well as UniProt pkinfam for 
kinases24. We also grouped at the level of gene, rather than G-I pair (Figure S5). 

Druggability and protein families. Antibody and small molecule druggability status was taken 
from Open Targets25. For antibody tractability, Clinical Precedence, Predicted Tractable – High 
Confidence, and Predicted Tractable – Medium to Low Confidence were included. For small 
molecules, Clinical Precedence, Discovery Precedence, and Predicted Tractable were included. 
Protein families were from sources described previously15, plus the pkinfam kinase list from 
UniProt24. To make these lists non-overlapping, genes that were both kinases and also either 
enzymes, ion channels, or nuclear receptors were considered to be kinases only. 

Statistics. Analyses utilized custom scripts in R 4.2.0. For binomial proportions P(G) and P(S), 
error bars are Wilson 95% confidence intervals. RS at each phase is defined as a risk ratio 
(Xyes/Nyes)/(Xtotal/Ntotal) with Wilson 95% confidence intervals, while RS for phase I–launch is 
defined as a product of the three phase-wise risk ratios, with Katz 95% confidence intervals. 
Effect of continuous variables on probability of launch were assessed using logistic regression. 
Differences in RS between therapy areas were tested using the Cochran-Mantel-Haenszel chi-
square test (cmh.test from the R lawstat package). Pipeline progression of drug-indication pairs 
conditioned on the highest phase reached by a drug was modeled using an ordinal logit model 
(polr with Hess=TRUE from the R MASS package). Correlations across therapy areas were 
tested by weighted Pearson’s correlation (wtd.cor from the R weights package); to control for 
the amount of data available in each therapy area, the number of genetically supported T-I pairs 
having reached at least phase I used as the weight. Enrichments of T-I pairs in the utilization 
analysis were tested using Fisher’s exact test. All statistical tests were two-sided. 

Source code availability and data availability. An analytical dataset and source code will be 
made available at https://github.com/ericminikel/genetic_support/ and will be sufficient to 
reproduce all figures and statistics herein. 
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SUPPLEMENTARY FIGURES 

 

 
Figure S1. Data processing schematic. Dataset size, filters, and join process for 
Pharmaprojects and human genetic evidence. Note that a drug can be assigned multiple 
targets, and can be approved for multiple indications. The entire analysis described herein has 
also been run restricted to only those drugs with exactly one target annotated (Figures S5-S7). 
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Figure S2. Further analysis of influence of characteristics of genetic associations on 
relative success. A) Sensitivity of RS to the similarity threshold between the MeSH ID for the 
genetically associated trait and the MeSH ID for the clinically developed indication. The 
threshold is varied by units of 0.05 (labels) and the results are plotted as RS (y axis) versus 
number of genetically supported T-I pairs (x axis). B) Breakdown of OTG and OMIM RS values 
by whether any drug for each target-indication pair has had orphan status assigned. C) RS for 
somatic genetic evidence from IntOGen versus germline genetic evidence, for oncology and 
non-oncology indications. D) As for top panel of Figure 1D, but without removing replications or 
OMIM-supported T-I pairs. E) As for top panel of Figure 1D, removing replications but not 
removing OMIM-supported T-I pairs. F) Launched, genetically supported T-I pairs by year of 
launch (y axis) and year of first genetic association (x axis). Gene symbols are labeled for first 
approvals of targets with at least 5 years between association and launch. G) Proportion of T-I 
pairs supported by a GWAS Catalog association that are launched (versus phase I-III) as a 
function of the year of first genetic association. 
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Figure S3. Proportion of type 2 diabetes drug targets with human genetic support by 
highest phase reached. A) OMIM, b) established GWAS genes, c) novel GWAS genes, or d) 
any of the above. 
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Figure S4. Further analyses of differences in relative success among therapy areas. A) 
Probability of success, P(S), by therapy area, with Wilson 95% confidence intervals. Fractions at 
right show the number of launched T-I pairs (numerator) and number of T-I pairs reaching at 
least phase I (denominator). B) Probability of genetic support, P(G), by therapy area, with 
Wilson 95% confidence intervals. Fractions at right show the number of genetically supported T-
I pairs reaching at least phase I (numerator) and total number of T-I pairs reaching at least 
phase I (denominator). C) P(S) vs. P(G), D) RS s. P(S), and E) RS vs. P(G) across therapy 
areas, with crosshairs representing 95% confidence intervals on both dimensions. F) Re-
analysis of RS (x axis) broken down by therapy area using data from supplementary table 6 of 
Nelson et al. 2015. 
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Figure S5. Level of utilization of genetic support among targets. As for Figure 3, but 
grouped by target instead of T-I pair. Thus, the denominator for each cell is the number of 
targets with at least one genetically supported indication, and each target counts in the 
numerator if at least one genetically supported indication has reached phase I. 
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Figure S6. Figure 1 restricted to drugs with one target only. 
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Figure S7. Figure 2 restricted to drugs with one target only. 
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Figure S8. Figure 3 restricted to drugs with one target only. 
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